PAUL WATSON

system more secure is commonly known as

security by obscurity. Certainly, vendors have the
right to use trade secret protection for their products
in order to extend ownership beyond the terms
afforded under copyright and patent law. But some
software systems must satisfy critical requirements
under intensive challenges, and thus must be trust-
worthy. The following scenarios illustrate the limita-
tions of the myth of security by obscurity.

The Ostrich. Metaphorically, many people think
(falsely) that ostriches put their heads in the sand in
the belief that they are invisible. Some designers think
that by restricting access to their system code,
exploitable vulnerabilities will not be exposed. The
fallacy in this line of reasoning was evident in Matt
Blaze’s 1994 discovery of a flaw in the Escrowed
Encryption Standard (Clipper) that could be used
to circumvent law-enforcement monitoring
(www.risks.org, risks-16.11 and 16.12). Surprisingly,
Blaze’s method allowed for even easier access to secure
communication through the proliferation of Clipper
products than was previously possible, without access
to any keys, backdoors, or weaknesses in the encryp-
tion algorithm. (Hiding cryptographic keys is of
course necessarily a form of security by obscurity.)

The Emperor Has No Clothes. A fabled trusted
entourage agrees with a foolish assertion because
each observer fears retribution. Software is not like
Coca-Cola®, where for decades a handful of key
employees have been trusted with a secret recipe and
production process. Many computer systems are
constructed in environments where a host of devel-
opers, debuggers, integrators, evaluators, and end
users (with shared or possibly conflicting interests)
require access to the proprietary product. Each of
these individuals or agencies (collectively and indi-
vidually) may hold the “keys to the kingdom,” not
only because they have knowledge of some or all of
the secret code, but because they may be aware of
limitations and constrained from revealing or shar-
ing this information. Also, organizational culture
may discourage whistleblowing, even when dire
consequences are possible. This happened in both
space shuttle accidents, where the O-ring and
debris damage problems were known within the
NASA community before the fateful missions.

The belief that code secrecy can make a

160

November 2003/Vol. 46, No. | | COMMUNICATIONS OF THE ACM

*ve Got a Secret. The ease with which digital files
can be transmitted (willingly or inadvertently) com-
pounds the software secrecy problem. Earlier this year,
several proprietary voting system program files were dis-
covered on a subcontractor’s unsecured FTP site. The
vendor (Diebold) argued the software subsequently
reviewed at Johns Hopkins represented “a very small per-
centage of the entire code needed to conduct an election”
(www.diebold.com/election.htm). Of course, this does
not excuse the lax security that allowed the code to be
downloaded from the Internet in the first place.

The Shell Game. Here, a trickster uses slight-of-
hand to keep an object from view. In the preceding
voting system example, the Johns Hopkins analysis
team found numerous security flaws in the code, one
of which involved the use of a vulnerable DES encryp-
tion protocol, along with a hardcoded key in the
source file (www.avirubin.com/vote.pdf). Diebold
defended its system in a rebuttal report, claiming the
examined software was “an older version” that had
“passed rigorous functional tests and reviews”
(www.diebold.com/checksandbalances.pdf). However,
many election equipment tests are performed in secret,
thus making it impossible to ascertain the level of rigor
applied. One such reviewer, Douglas Jones, had served
on lowas Board of Examiners and, based on his analy-
sis of a federal test report, had asserted to Global
(Diebold’s predecessor) in 1997 and the House Sci-
ence Committee in 2001 that inappropriate key man-
agement was being used with the firm’s products
(www.cs.uiowa.edu/~jones/voting/dieboldacm.html).
It will be difficult to know whether such problems
have been adequately resolved, because Diebold
plans to continue its closed-source practices.

As noted here last month, open source by itself
does not provide a solution to these problems. Risk
assessment, examination, and testing appropriate to
deployment settings are fundamental to security
assurance—which should not be hampered by ven-
dors’ refusals to disclose critical components where
a need to know can be demonstrated. Furthermore,
customers should not cling to the false hopes of
security by obscurity.

ReBECCA T. MERCURI (mercuri@acm.org) is a research fellow at Harvard
University’s Kennedy School of Government and author of Communications’
Security Watch column. PETER G. NEUMANN moderates the ACM Risks
Forum (www.risks.org).

